
Ken Ellinwood

PHILIPS

Technical Note #81

Using SrcDbg to Debug
CD-I Software

October 2, 1992

Microware's source level debugger, SrcDbg, is a very useful tool for debugging CD-I
software. This document offers many hints and tricks that make the debugger easier to
use. This document is not intended as a tutorial on SrcDbg commands or how to use
debuggers.

Copyright© 1992 Philips Interactive Media of America.
All rights reserved.

This document is not to be duplicated or distributed without written permission from
Philips Interactive Media of America.

~

Using SrcDbg to Debug CD-I Software

Introduction and Caveats

The purpose of this document is to pass on knowledge gained through years of
experience debugging CD-I titles with the Microware source level debugger, SrcDbg.
Many hints and tricks described here make the debugger easier to use. However, this
document is not intended to teach the specifics of SrcDbg commands or how to use
debuggers. Please refer to the Microware SrcDbg manual for a detailed explanation of
the SrcDbg commands.

To use SrcDbg, you must compile the application with the Microware C compiler.
Other compilers, such as the GNU compiler and Macintosh compilers used with "Fix
Code," do not generate the proper symbol tables required b.y the debugger.

Decreasing SrcDbg's Startup Time

To generate the symbol tables for debugging, compile and link your code with the -g
option. When SrcDbg starts up, it reads and parses the symbol table. The time it takes
SrcDbg to parse the symbol table is directly related to the size of the table. For large
applications, this can involve a considerable amount of time (as much as a few
minutes). The size of the symbol table-and the time required for SrcDbg to start up­
can be reduced significantly by compiling a subset of the application's code modules
with the -g option. In other words, compile only those files with the -g option that you
need to debug. This method creates symbols for only those files, and the startup time
for SrcDbg is greatly reduced.

Information about the structure and type of a particular global variable is generated
only when the file in which that variable is declared is compiled with the -g option.
The debugger still knows the name and address of the variable, even if the file has not
been compiled with the -g option. However, it is not able to display the data in its
correct form (for example, it will print a structure as an integer). So if you need to
reference the value of particular giobal data element, make sure that the file in which it
is declared is compiled with the -g option.

To compile a subset of the source code with the -g option, it is preferable to have a make
file that is smart enough to do this for you. The following is a an example from a make
file that does the trick:

Using SrcDbg 1

CC • cc68
RLIST ■pecifi•• all .r fil•• that link together to generate the executable
RLIST = filel.r file2.r file3.r file4.r fileS.r

DLIST ■pecifi•• all .r file■ that are to be generated with the -g option
DLIST • filel.r file3.r fileS.r

CFLAGS ■pecifi•• default compile option■, do not put -g here
CFLAGS • -v-. -V•/U■ r/local/def ■ -r•./rel ■

Rl'ILES 1 ■ the liat of all .r• • with the target path appended to the name.
Rl'ILES • $(RLIST1%•rela/%)

compile the .c file ■ making a debug veraion if the .r file 1• in the DLIST
$(RFILES) $$(9Fr.r•.c)

9found•falae 1 \

for i in $ (DLIST) 7 do\
1f ($$1 • $(9F)] , then \

found•true 1 \

echo "$(CC) $(CFLAGS) -g $(.F:.r=.c)" ; \
$(CC) $(CPLAGS) -g $(.F:.rs.c) ; \

fi; \
done; \
if ($$found • falae J; then \

echo "$(CC) $(CFLAGS) $(.P1.ra.c)" ; \
$(CC) $(Cl'LACS) $(.F:.ra.c) \

fi

With this make file, the DLIST macro specifies the subset of source code that is
compiled with the -g option. If you add a new file to this list without having modified
its contents, it may be necessary to touch the source code file to force the file to compile
so that the necessary symbols are generated for debugging purposes.

Translating ·the EOL Characters in the Source Code

Depending on the system on which the source code is developed, it may also be
necessary to translate the end-of-line (EOL) character from the one used on the
development platform to the one used by 05-9. For example, the Sun uses octal 12 as
its EOL character, and 05-9 uses octal 15. The translation is necessary so that SrcDbg
correctly displays the source code during the debugging session. Once again, the make
file is the place to do this. The following line may be added to the make file just below
the compile command. It uses the Sun tr command to translate the EOL characters in
the source code to the correct value for 05-9. The translated files are kept separate from
the original source files and are placed in the local dbsrc directory.

tr '\012' '\015' <$(9Fr.r•.C) >dbarc/$(•Fr.ra.c) 1 \

The next step is to move the translated source, symbol tables, and executable to a local
player device. This may be done by way of NFS, PC-Read, or by building the files into
the emulated disc image. If you use PC-Read, keep in mind that the file names must
remain the same in order for the debugger to work.

2 Using SrcDbg

Setting the Environment for Debugging

Once the necessary files are accessible by the player, the debugger requires a specific set
of environmental variables to be defined. The PORT environment variable must be set
to the name of the terminal device. For 180 players this is /tO. For 605 players, this is
/term. The TERM environment variable must be set to a value recognizable by the
termcap library. The SOURCE variable is optional, but it should list the various
locations that SrcDbg is to search to find the source code. The PATH variable is also
optional, but it should be set to the locations that SrcDbg is to search for the executable
and symbol tables. Here is an example:

aetenv PORT /term , naae of terminal
aetenv TERN vtlOO type of terminal
aetenv SOURCE /hO/arc location of translated source code
aetenv SOURCE /hO/bin ; location of exe and symbol•

It is important to remember that SrcDbg searches two locations before it starts down the
SOURCE and PATH lists in its attempt to locate the required files. These locations are
the current directory and the original location of the file. This "feature" is likely to
cause the following problem. If, in its search, SrcDbg is able to locate the untranslated
source before it finds the translated source (these files have the same name, of course),
when it the source code from the program is displayed, SrcDbg simply displays [End of
file]. For example, if the original source is compiled from [serpentine]:/x/code/test.c
and serpentine:/x is mounted as /x on the player, SrcDbg will find the untranslated
source before the translated source, because, from the player, the path /x/code/test.c is
perfectly valid. This problem probably would not arise if relative path names were
used when compiling the code because a similar relative path may not be valid on the
player.

Common Problems

Here are a few things that cause SrcDbg to break and hints on how to avoid them.

• SrcDbg does not work if the keyboard signal is armed. The recommended
workaround is to avoid arming the keyboard signal when you are debugging.

• Debugging is difficult when signals are being generated. If you have launched your
program using the debugger, it runs normally until it reaches a breakpoint. If
signals are being generated when the breakpoint is taken, they will be queued and
not handled until the program continues. Unfortunately, if you type the next or
step commands to get to the next line of code under these conditions, the debugger
executes the signal intercept routine in response to the command and returns to the
same line of code without advancing to the next one. This continues until all of the
signals have been exhausted from OS-9's internal queue. If enough signals are
generated while the program is stopped and waiting for commands, you may begin
to lose signals. Or, if you are using Balboa, the dispatcher queue overflows when
you finally allow the program to continue. The only practical way to deal with this
problem is to use #ifndef logic to eliminate the source of the signals from the
executable that requires debugging. Typically, only the alm_cycle() or tmr_clock()

Using SrcDbg 3

calls are sources that need to be dealt with in this manner. Other sources, such as
the video signal, must be re-armed so the breakpoint can usually be taken before the
signal is enabled again. When debugging a problem related to a real-time play,
ss_pauseO and ss_continue() (or the play manager equivalent of these functions)
may be used to bracket the area of code that is to be debugged. When the play is
paused, play-related signals that would otherwise wreak havoc with any attempt to
debug will not be generated.

• The symbol tables (files with .dbg and .stb suffixes) must have executable attributes
for SrcDbg to work correctly. If not, SrcDbg will complain with a 214 error.

1elpful Hints

;rom the SrcDbg command line, it is possible to execute a function and display its
eturn value. Simply type print, followed by the function call. For example,
,rint foo(5) will call the function foo0-passing it the parameter 5-and display the
esult. It is also possible to use this technique to cancel a timer or to pause and continue
~ lay, for example.

4 .. drn how to use the scope features of the debugger. This is helpful when you want to
-et a breakpoint or examine a variable in another source file. For example, if the
·urrent source file you are in is filel.c and you are stopped at a line in the function
:unctionl0, it is possible to set a breakpoint at an arbitrary line in function30 inside
"ile3.c by following the procedure listed here:

) Use the list command to determine the line number where the breakpoint is
desired, for example, list function3<ret>.

:) Once the line number has been determined, set the breakpoint by issuing a break
command with a scope argument. For example, break file3.c\88 sets a breakpoint
at the 88th source code line in file3.c.

tis possible to determine the name of a function or variable if its address can be
tetermined. Use the dump command to display memory at the given address. SrcDbg
lisplays the dump with memory addresses in symbolic form (in relation to the nearest
:~ n symbol). In the following example, a function address is given and it can be

.rmined that this address points to the function EfxTerminateO.

reDbg: dump 0x8ed822
fxTerminate - ,Essoooo ,eE7C080 •EAE!l3E6 •EAE!IJEC
fxTerminate+0xl0 - •AAE8l36 670A72Fl' 7000206E Sl3UE90
fxTerminate+0x20 - ,cED0l02 l'l'FUESD •E75,ES5 0000UE7
adeDownAudV1d+0x6 - co8o,uE 8SCE670C 2217,lFA 22172008
adeDownAudV1d+0xl6 - •EAE!l32C ,uESl36 670A72Fl' 7000206E
adeDownAudV1d+0x26 - 813UE90 100120,0 8178078 000U2A7
adeDownAudV1d+0x36 - 72FF202F 00086176 so8r,cEo 0l02FFF8

.. n Advanced Technique for Debugging the DCP

be following is an especially powerful technique that has been used to effectively
:ebug DCP problems. A stand-alone program, called ViewDCP, was developed to run
n the player. It displays the DCP for a program in familiar mnemonics by responding

Using SrcDbg

to commands from a command line interface. ViewDCP opens the video path for itself
but retrieves the DCP identifiers from a data module that is created by the CD-I
application program. To determine the contents of the DCP at any point in the
application code, a breakpoint is set and taken using SrcDbg. The shell command is
used from inside SrcDbg to temporarily escape to an 05-9 shell where ViewDCP can be
started and then used to examine the current contents of the DCP. The ViewDCP
program is somewhat title specific in_ regard to the format of the data module that
contains the DCP identifiers. However, it may be easily modified to fit the architecture
of another title. This method is recommended for any title that relies on intricate DCP
operations. ViewDCP will soon be available in /usr/local/cdi.

Summary

The following is a summary of the things that have been elaborated on in this
document.
, \
~

2)

3)

4)

5)

6)

7)

~

9)

10)

11)

Reduce the size of the symbol table by compiling the minimum subset of files
required for debugging with the -g option.

If necessary, translate the E0L characters in the source code to the character that
05-9 expects for E0L.

As much as possible, automate the steps described above by creating a "smart"
make file. The make file can even be used to generate scripts for copying the
source, symbols, and executable to a player device.

Be aware of how SrcDbg searches for the source code files if you have translated
the E0L characters in the source code.

Do not arm the keyboard signal.

Make sure that the symbol table files have exectuable attributes.

Develop a method to compile out timers that interfere with debugging for debug
versions of the code.

When debugging play-related problems, place an ss_pause() call just before the
breakpoint. Use ss_continue() when it is time to resume execution of the code.

Learn how to set breakpoints and examine variables using scopes.

Use the dump command to determine the name of a function or variable that
would otherwise be identifiable only by its address.

Customize your code to use ViewDCP for debugging DCP related problems.

Using SrcDbg 5

	241
	242
	243
	244
	245
	246

