
PHILIPS

Technical Note #83

A Compression Algorithm
for Monochrome Images

Graham Trott, BEPL October 10, 1992

A compression algorithm was developed during solution of the problem of putting up a
graphical error screen, which needed to be kept in memory at all times. The compression
method discussed herein results in a considerable reduction of the image storage
requirements for these error screens.

Copyright© 1992 Philips Interactive Media of America.
All rights reserved.

This document is not to be duplicated or distributed without written permisi;ion from
Philips Interactive Media of America.

A Compression Algorithm for Monochrome Images

The minimal error handling strategy recommended by PIMA Technical Note #54, Error
Strategy for CD-I Final Product Deliverable, requires an information screen to appear when a
fatal error occurs. Where the title makes no use of font modules, the error screen has to be
implemented as a graphic. Since it must be present at all times , size is a major
consideration. (There's nofmuch point in keeping disc error messages on the disc.)

A typical message comprises six lines of text (18-point Helvetica bold). The example used
by the author compresses to 7500 bytes using RL3 coding; however, by using the technique
described herein, the image storage requirements are reduced to 4200 bytes.

The title in which this was used has two message screens: one for disc errors and the other
for anything else reported by Balboa (overruns, memory full, etc.). The two screens and ten
numeric digits (see below) take up a total of 9100 bytes. This is a tolerable memory size to
lose.

The technique is one of run-length compression, with an additional saving made by
implementing a "repeat last line N times" feature. Only two colors are catered for, which is
the chief reason that the result is nearly twice as efficient as RL3. The first listing
(Compresslmage) is the encoder routine. This assumes that a CLU17 IFF file is already
open (fileRef), as is an output data file (outFileRef). The offset to the start of the image
data (in the input file) is passed as filePos; the width and height (in pixels) of the image are
passed as picW and picH.

The coding uses bit 7 of a byte to indicate the color (foreground or background) and the
remaining 7 bits for the run length of that color. Two special cases are:

1. When the run length is 127, it is interpreted as "continue to end of line." This implies
that only run lengths of 1-126 are otherwise valid.

2. When the entire byte is zero, the following byte is taken to be the -number of lines to be
repeated (up to 255).

The second listing (Expandlmage) is the corresponding run-time decoder. You must have
previously set up a CLU17 PIC1URE with a CLUT having at least two entries; the choice of
colors is up to you. You pass the function a pointer to the PICTURE, the coordinates and
size of the graphic (which may be zero and the size of the PICTURE), and a pointer to the
compressed data. Drawing is done using the Balboa blit_write function. A couple of
noteworthy points follow:

1. As a general programming hint, I find it most effective to hide function calls inside
macros, as in the encoder listing. All the error reporting is hidden from the program
itself, and I never succumb to the temptation to leave it out "just while I'm developing
this piece of code."

2. Concerning error reporting, there's always a problem in identifying the cause of a crash
in CD-I. Although many errors can be caught on an emulator, at some point, the
prototypes have to b-~ tested on real players without diagnostic ports. Since the sessions

A Compression Algorithm for Monochrome Images · 1

Sample Program

/* Macro• uaed in the encoder to improve readability*/

#define ReadPile(atream,buffer,count) \
if (fread((void *)buffer,count,l,atr•am>••O) \
{ Error(•fread failed•);)

#define WritePile(atream,buffer,count) \
if (fwrite((void *)buffer,count,l,atr•am>••O) \
{ Error(•fwrite failed•);)

/* The image encoder*/

void CompreaalmAge(fileRef, outPileRef, filePoa, picW, picH)
PILE *fileRef, *outPileRef;
long filePoa;
int picW, picH;
{

int repeata, row, col, length, run, thiaRun;
unaigned char thiaRow(400), laatRow(400];

repeata•O;
for (row•O; row<picH; filePo•+•picW, row++)
{

memcpy(laatRow,thiaRow,picW);
faeek(fileRef,filePoa,SEE~_SET);
ReadPile(fileRef,thiaRow,picW);
if (rowl•O)
(

/* aave the laat row*/

/* read a row*/

for (n•O; n<picW; n++) if (laatRow(n]!•thiaRow(n]) break;
if (n••picW)
{

repeata++; /* it'• the aame */

)

if (roW••picH-1 I I repeat•••2SS)
{

)

code[O]•O;
code[ll•r•peata;

writ•Pile(outPileRef,code,2);
repeata•O;

continua;

if (repeata)
{

)

code[Ol•O;
code[ll•repeata;
WritePile(outPileRef,code,2);
repeata•O;

/* •repeat laat row•*/
t• # of rowa to repeat*/

/* write cod• •t

/* go check next row •1

/* •repeat laat row"*/
/*#of rowa to repeat*/

/* writ• code*/
/* reaet th• count*/

A Compression Algorithm for Monochrome Images 3

}
)

col•O;
while (col<picW)
{

)

for (length•l; thiaRow(coll••thiaRow[col+length]; length++)
(

)

if (col+length>•picW) /* run to end of lin• */
(

code(OJ•C(thiaRow(col)<<7)1127);
Writ•Pile(outPil•R•f,code,l); /* writ• code •1
colapicW;

)

•l••
(

)

run•length;
while (run>O)
(

1• got th• run length •1

thiaRun•(run>l26)?126arun;
code[OJ•(thiaRow[col)<<7) lthiaRun;
WritePile(outPil•Ref,code,l); 1• writ• code •1
run-•thiaRun;

)

col+•l•ngth;

1• Th• image decoder; part of the run-time application*/

void Expandlmage(Pic, left, top, width, height, runptr)
PIC'l't7RE *Pie;
int left, top, width, bAight1
unaigned char •runptr,
{

int columna, rowa, col, row, length, color;
unaigned char thiaRow(400J;

columna•Width>>l;
~ rowa•h•ight>>l;

row•O;

4 A Compression Algorithm for Monochrome lmagei-

-~

loop:

)

while (row<rowa)
{

)

col•O;
while (col<columna)
{

if (•runptraaO)
{

t• repeat laat line •t

for (narunptr(l); nl•O; row++, n--)
{

blit_writ•(thiaRow,Pic,l•ft,top+(row<<l),width,2);
)

runptr+•2;
goto loop;

)

color••runptr>>7;
length••runptr.Ox7f;
if (length••l27) length•columna-col;
memaet(.thiaRow[colJ,color,langth):
col+alength;
runptr++;

t• remainder of line •t

}

blit_write(thiaRow,Pic,left,top+(row<<l),width,2);
row++;

A Compression Algorithm for Monochrome Images 5

	251
	252
	253
	254
	255

