
'

PHILIPS

Philips Interactive Media

Technical Note #90

Improved Seek Times
with l$Seek

Cor Luijks, _
Philips Interactive Media Systems, Eindhoven
Charles Golvin
Philips Interactive Media, Los Angeles

Abstract

January 12, 1994

This technical note describes the use of the function 1$Seek to improve seek
times.

Publication History:
No revisions.

To receive Philips Interactive Media technical notes and other publications, or for more
information, please contact the person below who is designated for your area.

From Europe and the Middle East:

Hein Zegers
Developer Support
Philips Interactive Media Centre
Maastrichterstraat 63
B-3500 Hasselt
Belgium
Fax: +32 11 242168
Internet ID: hein@pimc.be

From the USA and Asia:

Lucy Lediaev
Developer Support
Philips Interactive Media
11050 Santa Monica Boulevard
Los Angeles, CA 90025
USA
Fax: + 1 310 477 4953
Internet ID: lucy@aimla.com
CompuServe ID: 72056,1130

Copyright <D 1994 Philips interactive Media.
All rights reserved.

This document 1~ not to be duplirnted or distributed without written permission
from Philip:. Interactive Media.

~

ti

Improved Seek Ti mes with 1$Seek

Introduction
In contrast to hard disks, where the data is stored in multiple tracks, the data on a
compact disc is stored in one "track." This "track" is laid down on the disc in the
form of a spiral. The beginning and end of the spiral are indicated by the lead in
and lead out. A side effect of having a spiral is that once the head is positioned it
automatically proceeds along the "groove" until it reaches the lead-out area.

CD-RTOS provides two different mechanisms for seeking, one synchronous
(ISSeek) and one asynschronous (SS_Seek). Although the asynchronous seek
initially seems a better choice due to the structure of the optical disc, the
synchronous seek in general provides better performance.

Optimization of Seek Operations
All functions that retrieve data from the disc (SS_CDDA, SS_Raw, SS_Play,
ISRead) start reading from the current file position pointer. This pointer is
merely a system reference to the location from which the delivery is to take
place; changing the position of this pointer via l$Seek (or lseek() for C
programmers) has no effect on the physical location of the read head.

If the current file position pointer does not agree with the physical location of the
head, each of these read operations forces the repositioning of the head prior to
fetching data from the disc. That is, each read function has an implicit seek built
info its operation. This implicit seek represents a physical operation, and it can be
time consuming. The Green Book mandates that the seek time may be no more
than one second within a distance of 20 Megabytes, increasing linearly with
distance to a maximum of three seconds across the entire disc.

Because no new data can be delivered while the head is being repositioned, seek
times. are a large contributor to "dead" times in titles. To optimize performance, a
title developer must attempt to minimize these seek times. Seek time is
minimized when the physical distance between the head's location and the
desired read location is minimized. Therefore, title developers should optimize
the layout of data on the disc so that the data needed to satisfy a user's requests is
close to the location from \,vhich data was last read.

One simple example of this optimization concerns the startup of the application
program on a CD-i disc. The player shell uses 1$Read (via FSLoad) to load the
application module into memory, so the application program should be as close
to the start of the disc as possible to minimize the duration of the implicit seek to
the start of the application program on disc. Similarly, the first data required by
the application program should be in the next location on the disc, etc.

Of course, interactivity means providing choices to the user so it is necessary to
seek on the disc. CD-RTOS provides two mechanisms for seeking:

ISSeek

SS_Seek

Change the file position pointer

Change the file position pointer and reposition the head

TN#90: Improved Seek Times with ISSeek 1

~

Because oi the implicit seek discussed above, it is evident that the sequence oi 0
SS_Seek and then SS_Play causes the head to move twice; whereas the sequence
ISSeek, SS_Play will only cause the head to move once. Thus, in general, when G
an application is ready to deliver data from disc the latter sequence will be more
efficient in starting the delivery of data. The main use for SS_Seek is in the c.ise
that the application knows well in advance that the next location from which it
will read data is far from the current file position, and will continue a
presentation to the user before having to read the disc. In this case the head may
be moved to the correct location asynchronously, invisibly to the user, and when
the time arrives to read the disc the implicit seek will be minimal. In all other
cases where the application must seek immediately prior to delivering data, it is
more efficient to use !$Seek and rely on the implicit seek in the read command.

Conclusion
All of the functions that retrieve data from the disc perform an implicit seek to
position the head in the correct location for reading. When reading data from the
disc it is more efficient to reposition the file position pointer (via l$Seek) and rely
on this implicit seek than to explicitly position the head (using the SS_Seek call).
The SS_Seek call should only be used to asynchronously reposition the head
well in advance of reading data.

2 TN#90: Improved Seek Times with ISSeek

	342
	343
	344
	345

