
~

Interactive
Media
Systems

\ N

CD-I

~
TSA APPLICATION NOTES NR. TSA-008 May 05 1993

Intro to programming the FMV System

This paper reveals the basic knowledge required to
successfully implement simple FMV features such as play,
pause, slow motion and scan. The build-time tools, run-time
algorithms and data structures required to support these
features are covered. Code examples are used to illustrate the
techniques described.
Written by Ken Ellinwood

copyright 1993 PIMA nr. of pages: 26

PHILIPS

,..

,·

l~
~ ·· .. .,;.:. ~- ~
,_:~·5~~1
- .. ,. l,· ~7

-. --''

Philips IMS TSA Application Note nr. TSA-008 Introduction to Prop-amminc the FMV System page 1

Introduction

The purpose of this document is to help the application programmer get staned in
understanding the process of playing FMV sequences in CD-I. Some basic
CD-I knowledge on the part of the readeris assumed, especially in the area of real
time plays with CDFM and OS9 signal handling.

This document is broken into two parts. In the first part, the relevant tools that must
be used to create FMV sequences within a disc image will be discussed. In the
second section, the focus turns to the implementation of simple linear play
features in run-time application code.

Philips IMS TSA Applic:ation Note nr. TSA-008 lnll'Oductioo to Procramminc the FMV System pace 2

Part I - Tools for FMV Development

In general, the process of preparing assets for full-motion playback in CD-I
requires the following steps:

I. Grabbing
2. Encoding
3. Multiplexing
4. RTF generation/ Disc building.

The grabbing and encoding steps are not applicable to this discussion and are
therefore skipped.

Philips IMS TSA Appiictlion Nolt' nr. TSA-008 lntruduction lo Procnmminc the FMV System page 3

Multiplexing

Audio and video are typically encoded by different encoders and therefore are
delivered as independent assets. Multiplexing is the step where the elementary
encoded audio and video streams are merged i1,1to a file containing two interleaved
"system" streams, one for audio and one for video. The resulting streams each
contain the ISO 11172 system layer - infonnation that is necessary to support the
synchronized playback of audio and video.

Multiplexing is perfonned with Pink, the multiplexer. Pink takes only one
argument, the name of a script file that directs its operation. Here is an example
of a simple script:

CDI "mystream.mpg" pattern 0xFFFF "mystream.dlt'' from
video ".Jvideo/mystream.mpv" stream 0 start 0
audio ".Jaudio/mystream l.mpa" stream 0 start 0
audio" .Jaudio/mystream2.mpa" stream 1 start 0

This script will multiplex the elementary video stream and two elementary audio
streams into a file named mystream.mpg. The pattern construct is used here to
indicate that all available sectors may be used. Later on, the outputfile
mystream.mpg will be used as input during creation of the real-time file for the
disc image. The file mystream.dlt is called a delta file - it is created by the
multiplexer and contains information used by the disc builder to allocate sectors
for the multiplexed streams. The stream numbers and starting presentation time
stamps (synchronization information) for each elementary stream are also given
in the script

If encoding was performed by the Philips encoder, the following modification can
be made to the script to support the propagation of entry point information through
the encoding and disc building process:

CDI "mystream.mpg" pattern 0xFFFF "mystream.dlt"
entrypoints "mystream.pel" from

video ".Jvideo/mystream.mpv" stream 0 start 0
entrypoints ".Jvideo/mystream.eel"

audio ".Jaudio/mystream.mpa" stream 0 start 0

Philips IMS TSA Appli<'lllion Note- nr. TSA.0011 lnt"iduction to J>roiramming the FMV System pace 4

This script directs Pink to read "mystream.eel" (generated by the encoder) and
write the file "mystream.pel" (to be read by Master, the RTF/disc builder).

Entry Points and Scan Tables

Let• s take a moment to discuss entry point data and its use by a CD-I application.
Entry point data is used by the application at run-time to start playback at places
other than the beginning of the video sequence. Due to the nature of the MPEG
encoding and decoding algorithms, access to the sequence cannot begin from
arbitrary locations - decoding must begin at an entry point. The location of entry
points must be determined prior to encoding so that the encoder can be directed
to encode the entry points at the proper locations. If the Philips encoding system
is being used (Philips encoder, Pink, and Master), then the encoding system
produces information that the application can use at run-time to access the entry
points (assuming that it is told to, of course). Otherwise, the required information
can be determined by parsing the output of the multiplexer.

The entry point information needed by the application at run-time corresponds to
the location of entry points within the stream. In the case of video, the stream starts
with a sequence header and may be repeated at various location throughout the
stream. Each entry point corresponds to a sequence header within the video
stream. The entry point information for audio simply results in a sector number
due to the frequency at which audio frames occur within sectors.

In the general case, the information ~eeded to access an entry point consists of the
following information:

• Channel number and sector within the RTF.
• For each stream in the multiplex the following information is also needed:

1. stream type (audio or video)
ii. stream number
m. byte off setto the entry point in the multiplexed stream of this

type (audio or video).

Each entry point may also have a name associated with it for symbolic access.
Other information such as the width and heigh~ of the encoded video may be
determined at run-time through CD-RTOS calls.

-'t- -;; .. >:11.
. :~~•

·,..- :rj

Philips IMS TSA Application Nol• nr. TSA-o118 lntrodu~&n to Pro1ramminc t.h• FMV System PIii• 5

This is quite a lot of information. In practice, many of these parameters may be
assumed. For example, let's assume that there is only one video and one audio
stream to play back and that the channel number and stream numbers are always
zero. It can also be assumed that the audio and video offsets are zero simply
because the MPEG drivers will perform correctly in almost all circumstances
when the zero is passed as the video and audio offsets. In this case, all that is
required is a sector number for each entry poinL

A scan table is required to support playback in scan mode. A scan table contains
data in the same format as an entry point table - in fact. it is simply a super set of
data that also contains entry point information. Once the play has been started at
an entry point. the application can enter scan mode and seek to other addressable
units within the stream, such as a group of pictures (GOP). In this case, the GOP
is not required to have been preceded by a sequence header. Because the
application can also seek to an entry point during scan mode, the two tables may
he one and the same.

RTF Generation

Master can be used to generate MPEG within real-time files. There are three
options when generating MPEG within real-time files.

• No entry point data generation.
• Read and write entry point data from/to external files.
• Read entry point data and place the output in data sectors prior to the

MPEG sectors in the real-time file.

Here is a simple script that creates a real-time file without processing entry point
data:

real_time mpeg in channel 0
from ".Jpink/mystream.mpg"
delta_file ".Jpink/mystream.dlt"
ep_list off
at0

! Channel0
! Multiplexed input
! Delta file input
! No EP input/output
! Sector0

The MPEG streams will be placed in the real-time file such that the video is in
video sectors and the audio is in audio sectors. FMV coding types are defined for

PhiliP' IMS TSA Applic:ation Nutr nr. TSA-008 Introduction to Programming thr FMV Systma p11&r 6

MPEG audio and video in the Green Book extension. Chapter IX of the CD-I Full
Functional Specification.

For more information regarding Master's syntax and the format of the entry point
output file, refer to chapter 2 of the Disc Building document available from
Optimage.

For those developers that are dependent on DBL and/or CDL-BD, there is an
alternative method for creating MPEG real-time files that is compatible with these
tools. Contact Developer Services at PIMA for more information.

The process of building a disc has not changed with the ad vent of FMV. For this
reason, disc building is left as an exercise for the reader.

. ..:. a
:;;;1·

~

Philif" IMS TSA Applkati"n Nut.- nr. TSA-008 lnlroduction to Proerammlng the FMV System page 7

Part II - Writing Code for FMV Playback

In this section many code examples are given. Most of the #define values that
appear in upper case in the code examples are not present in mv.h and ma.h, the
header files delivered for the FMV system. The file fmv.h, where these symbols
are defined, has been attached to the end of this document for reference.

One final note, the examples that follow are for instructional purposes only. The
author has derived these segments from actual working code but does not
guarantee that they are free from mistakes or omissions.

Philips IMS TSA Application Note nr. TSA-008 lntruduclion to J»rocramminc the FMV System page I

Devices and Descriptors

The MPEG decoders are accessed as devices through CD-RTOS. Before opening
each device to obtain a path number, the application must first determine the name
of the device from the CSD in a manner similar to that used for the base case video
device. The device numbers used for the MPEG video and audio decoders are 90
and 91, respectively. It may be desirable to update your local copy of csd.h to
include the following two lines:

#define DT_MPEGV90 /* Device number ofMPEG Video decoder*/
#define DT _MPEGA91 t• Device number of MPEG Audio decoder */

Once the path numbers for the audio and video decoder have been obtained, the
application must create audio and video descriptors .. Each of the descriptors come
in two types, CD and HOST .. These types detennine if the play is to talce place from
data delivered by the CD or from pre-loaded memory .. For video, the descriptor
can also be created to play MPEG Still Pictures .. In all cases, the application must
make the decision regarding the type of the descriptor before the descriptor is
created .. To create a descriptor, use mv_create() and ma_create() .. The examples
given in this document will all assume that the play is from the CD:

mv_desc = mv_create(mv_path, MV _1YPE_O>);
ma_desc = ma_create(ma_path, MA_'lYPE_O>);

Signals Generated by the MPEG Decoders

The application may request that the decoders signal the application on the
occurrence of certain events during the playback of MPEG .. The mv _trigger0 and
ma_trigger() calls are used to inform the decoders of the events that the application
is interested in .. Both functions take 16 bit parameters - the upper 5 bits act as the
signal base and the lower 11 bits act as a mask by which the application can select
events .. For example, here is the format of the parameter to mv _trigger0:

I Signal Base! • INIS! BUF! EOS IECI! CNPI LPD I SOS! GOP IPICI DER!

Bit 15 11 10 9 8 7 6 5 4 3 2 1 0

Refer to the Chapter IX of the CD-I Full Functional Specification for more details
regarding the actual meaning of the bits listed here ..

Philips IMS TSA AppliL-:alion Nott' nr. TSA-008 Introduction to Prasramminc the FMV System pace 9

The implication is that the decoders do not generate unique signals based on each
event If two selected events occur simultaneously, then the decoder generates a
signal whose value is that of the signal base combined with the bits corresponding
to the two events. This may require a modification to the application's existing
signal allocation and handing logic. If the .application previously intended to
receive unique signal numbers, it may continue to do so as long as the non-MPEG
signals have values less than 2048. In this case the application's signal handler can
check the upper bits of the signal for the MPEG signal bases to determine how it
should be handled. Other applications that already allocate signal classes (a la
Balboa) should switch to classes that are multiples of 2048. Balboa users must
switch to version 1.3.2 (or higher).

PCL Handling by the MPEG Drivers

The mechanism by which data gets from the disc to the decoder during MPEG
playback is through PCL transfer buffers. For each decoder, the application is
required to provide a chain of one sector PCL buffers to which CDFM will deliver
data and from which the MPEG driver will receive iL For simple plays that do not
involve slow-motion mode, two sets of two circularly linked PCLs will suffice.
With one exception, ·the interface to CDFM remains the same as it always has -
the application sets a bit in the PCB_Chan mask of the PCB as well as the
corresponding PCL pointers in the audio and video channel index lists in order to
enable data reception in the channel containing the MPEG sequence. The
exception is that the MPEG drivers will maintain the PCLs during the play. The
drivers reset the PCL_Cnt and PCL_Ctrl fields in the PCL after it empties each
buffer. As expected, if the PCL_Sig field is set, CDFM will signal the application
when the buffer is filled. The MPEG driver will also signal the application with
the same signal when the buffer is emptied. Under simple playback circumstances,
however, the application does not need to set the PCL_Sig fields in the PCLs used
forMPEG

Starting the Playback of FMV

Now that the finer points of signaling and PCL handling have been covered, it is
time to move on to starting an actual play of an MPEG sequence. In an attempt to
keep the examples simple, many parameters -of the playback will be assumed.
Let's assume for the time being that the sequence to be played back is encoded at
30 frames per second, is 352x240 pixels wide, that the video and audio are in

Philips IMS TSA Application Note nr. TSA-008 Introduction lo Proeramminc the FMV System pace 10

stream number zero, and that it is to be displayed in NTSC. Also, keep in mind that
the functions being called return proper error values when an error occurs. Error
handling logic has been omitted from these examples for the sake of readability.
First. let's set up the FMV window for display:

/* Set the display origin for FMV */
mv_org(mv_path, 0, 0, 0);

/* Preset the encoded picture size and rate */
mv_imgsize(mv_J>ath, mv_desc, 704,480, 30);

/* Set the size and J')Osition of the decoded window relative to the encoded pictures. */
mv_window(mv_path, mv_desc, 0, 0, 704,480, O);

/* Center the de.coded window in the display */

mv_pos(mv_path, mv_desc, 32. 0, 0);

If the dimensions of the encoded pictures are not known by the application prior
to starting the play, it can wait until the first picture signal arrives and query the
motion video descriptor with mv _inf oO in order to determine the siu. Under these
circumstances mv _imgsizeO will not need to be called since the decoder will have
established the picture siz.e from the video sequence header. The application
simply needs to set the window siz.e and position with mv _posO and mv _ windowQ.

There are several important things to note from the example above. Prior to
decoding a video sequence, the decoder does not assume the width and height of
the encoded pictures. Because mv_window() clips the display window to the
encoded picture size, if the encoded. picture siz.e has not been preset to something
other than i.ero, the call to mv_windowO will result in a decode window siz.e of
z.ero. It is also important to know the difference between mv_window() and
mv_posQ. The size of the encoded pictures is determined when the video is
grabbed and encoded. The function mv_windowO sets the si7.e and position of a
decode window on the real-estate of the encoded image. The function mv _posQ
set the position of the decode window on the FMV display.

I

~ - I ..- Decoded window

r position set by
mv_posO

Decoded window
set by mv _ windowO

Philips IMS TSA Applicatinn Note nr. TSA--003 Introduction to J>rocramming the FMV System PIiie 11

The application must also set the audio and video streams to be decoded:

I* Set the audio attenuation and stream number */
ma_cntrl(ma_path, ma_desc, MA_A TIEN_NORM, 0);

/* Set the video stream number and width, height, pie rate */
mv_selo;trm(mv_path, mv_desc, 0, 704,480, 30;

The function ma_cntrl() is used to set the audio attenuation in a manner similar to
sc_atten().

Typically, the application should wait until the first picture is displayed to enable
the FMV display. To do this the PIC signal should be enabled:

/* Set upper 5 bits to sig base determined by application */
mv_trigs = mv_signal_base;

/* Add the PIC bit and call mv_trigger() to enable */
mv _trigs I= MV _TRIG_PIC;
mv_trigger(mv_patb, mv_trigs);

It is left to the reader to initialize a PCB and a set of PCL buffer chains (one for
audio and one for video). Refer back to the section titled ''PCL Handling by the
MPEG Drivers" for more information.

Once the PCB and PCL-buffers are set, it is time to start the play:

mv_cdplay(mv__patb, /* MPEG Video path*/
mv_desc, /* MPEG Video descriptor ID*/
MV _SPEED_NORMAL, /* Playback at normal speed */
0, I* Video entry point offset •1
mv _pcls, /* PCL list for MPEG Video */
&mv _stat, /* Status block for video play*/
MX_ WAIT _SYNC, /* Wait to sync with audio play */
0); /* Synchronization offset */

ma_cdplay(ma_path,
ma_desc,
o.
ma_pcls,
&ma_stat,
mv_path,
0);

/* MPEG Audio path */
/* MPEG Audio descriptor ID */
/* Audio entry point offset •1
/* PCL list for MPEG Audio */
/* Status block fc, audio play*/
1• Sync playback to video */
/* Synchronization offset •/

,__,

Philips IMS TSA Applieation Not• nr. TSA-008 Introduction to Pfovamminc Che FMV System pace U

Note that the video path is passed as the synchronization mode parameter to the
ma_cdplay() call. This will enable synchronized playback of the audio and video
based on the system clock reference and presentation time stamps found in the
system layer of the two streams. The synchronization offset is zero because it is
assumed that the beginning of the audio and the first picture in the video are to be
presented together.

The drivers are now ready to receive data. The only thing that remains is to start
the disc play:

,. Seek to the beginning of the real-time file that contains theMPEG streams and start
the disc play. */

lseek(rt_file_path, 0, 0);
ss_play(n_file_path, &fmv-rcb);

Now that the play is started, the application will quickly be signaled as to the
receipt of the first picture. At this time the application's signal handler should
enable the display of the FMV plane. In the following example, a simple
implementation of how to handle the MPEG signal fonnat is also shown:

Philips IMS TSA Appli,-.alinn J\iotr nr. TSA..008 Introduction lo Programminc the FMV System pace 13

sig_hamller(signal)
int signal;
{

}

if ((signal & SIGNAL_BASE_MASK) == mv_signal_base)
{

/* Handle MPEG video signals */

/* Is the PIC bit set?*/
if (signal & MV _TRIG_PIC)
(

}

/* Enable the FMV plane and set the base case video planes to
transparent. */

mv_sbow(mv_path);
dc_wrfi(vpath, fcLa. FCT_TCI,

cp_tci(MIX_OFF, TR_ON, TR_ON));

/* Disable further reception of the PIC signal */
mv_trig &= -MY _TRlG_PIC;
mv_trigger(mv_path, mv_ttig);

} else if ((signal & SIGNAL_BASE_MASK) -= ma_signal_base)
(

} else
{

}

/* Handle MPEG Audio signals */

/* Handle other signals */

Philips IMS TSA Application Noll' nr. TSA-008 Introduction to Prop-amming the FMV System pace 14

Pause and Continue

The FMV play may be easily paused or continued at any time:

/* Pause the play •1
mv _pause(mv _path);
ss_pause(rt_file_patb);

/* Continue lhe play */
mv_continue(mv_patb);
ss_cont(n_file_patb);

Because the playback of audio and video are synchronized, the call to mv _pauseO
will also pause the playback of audio. When mv _continue() is called, the playback
of audio will resume as well.

Handling the End of Play

The FMV playback may be aborted at any time. Here is an example of the calls
that must be made:

mv_abort(mv_patb);
ma_abort(ma_patb);
ss_abort(rt_file_path);

Both mv_abortO and ma_abort() must be called even if the playback is synchro
nized because if one is aborted without the other, the non-aborted decoder will
continue to decode in non-synchronized mode.

Both decoders must be aborted before another play may be started, even if the play
finishes normally. A normal end of play condition can be determined when the
EOI event occurs just after the Last Picture Displayed (LPD) event is received.

Slow Motion Playback

In slow motion mode, the drivers decode and display pictures at a slower rate with
the audio muted. The drivers support seven slow motion speeds - 1/2 through
1/8 normal speed. This mode requires a higher level of interaction between the
MPEG drivers and CDFM, but because there is no communication between these

Philips IMS TSA Applk-.alion J-.;otr nr. TSA-008 Introduction to Prop,unminc the FMV System pace 15

two. it is left.to the application to act as an intermediary. While in slow motion
mode. the MPEG drivers empty the PCL buffers at a slower rate than normal. To
ensure that the PCL-buffers do not overflow or under flow in this mode. the
application must pause and continue the disc play at the correct times to slow down
the rate of data delivery from CDFM. However. because it may take up to a second
for data delivery to resume after an ss_cont() call, there must be at least one
second's worth of data to decode in the PCL buffers when the call is made. This
means that to support this mode the application must use a larger PCL-buffer chain
than compared to a normal speed play.

Two possible implementations of slow motion will be discussed here. The first is
more memory intensive but requires less CPU throughput The second requires
less memory but a greater amount of CPU.

Method #1 - More Memory, Less CPU

The first method requires a PCL-buff er chain twice as large as that required to hold
a second's worth of data to decode in slow motion. One can think of it as two
halves. one of which is being decoded by the MPEG video driver while the other
is being filled by CDFM. The worst case memory size for this technique is when
the playback speed is highest because the decoder empties PCLs faster than at
slower speeds and therefore a greater number of PCL-buffers are required to cover
the latency in ss_cont(). At half speed playback. the decoder will empty approxi
mately 37.5 sectors per second (worst case), so the actual number of sectors
required is 75. Here is a general description of the processing required for slow
motion mode:

• Allocate a signal number for use in the PCLs during slow motion
playback.

• Allocate and initialize 75 PCL-buffers for the video decoder. Two
PCL-buffers for the audio decoder will still suffice.

• When entering slow motion mode, set the PCL_Sig field of Llie PCL
at the head of the list (the one pointed to by the channel index list) to
the signal value allocated above. Also set the PCL_Sig field of the
PCL halfway down the list to the same value. Set these in the video
PCLs only, not the audio PCLs. The call to mv_chspeed() is as
follows:

PhiliJ18 IMS TSA Applk:ation Not~ nr. TSA-tMl8 Introduction to Programming lhe FMV System pace 16

•

mv _chspee<l(mv_path,
MV _SPEED_SLOW(speed),
0,

NULL);

,. MPEG Video path •/
,. Speed parameter •1
1• Offset parameter •1
,. New PCL chain •1

The speed parameter is a value in the range 2 through 8, denoting
speeds of 1/2 through 1/8. The offset parameter is zero for the
transition from normal speed to slow motion, and if the 75 PCL
buffers are already in use during normal speed playback, the NULL
parameter for the new PCL chain indicates that the PCLs currently in
use are also to be used for slow motion.

Immediately, and also every time the slow motion PCL signal is
raised, check the to see if the PCL halfway down the list (the one that
also has the PCL_Sig field set) is full. Hit is full, then pause the disc.
If it is empty, then make sure the disc is playing, calling ss_contO
when necessary.

This method will ensure that the buffers are either more than half full with the disc
paused, or that the buffers may be less than half full with the disc continued. It will
guarantee that the buffer will not overflow resulting in a read error from CDFM
or an underflow error from the MPEG decoder.

Method #2, Less Memory - More CPU

The second method of implementing slow motion requires less memory but more
CPU. This method is implemented in the Balboa play manager to support FMV
slow motion mode. The technique still guarantees that there will be one second' s
worth of data in the PCL buffers when the ss_cont() call is made. Here is how it
works:

• Allocate a signal for use in the PCLs during slow motion mode.

• Allocate and initialii.e 42 PCL-buffers for the video decoder. Two
PCL-buffers for the audio decoder will still suffice.

• When entering slow motion mode, set the PCL_Sig field in all PCLs
in the video chain. Refer to the previous method for an example of the
mv _chspeed() call.

Philips IMS TSA Appli,-.ation Note nr. TSA-008 Introduction to Prop,unming die FMV System page 17

• Immediately, and whenever the slow motion PCL signal is raised,
check the four PCLs at the head of the list. If any of the four PCLs ~e
full, pause the disc. If they are all empty, ensure that the disc is
playing, calling ss_cont() when necessary.

This method requires more CPU simply because it generates more signals than the
other method. Signals are generated for each PCL by CDFM and the MPEG Video
driver at an average rate of 75 per second, although the rate is sporadic. The
frequency of the ss_cont()/ss_pause() pairs is not'as high as one would imagine
because the latency in ss_cont() allows the buffers to empty quite a bit before data
delivery resumes.

Using either method, the video may be paused or continued by simply calling
mv _pause() and mv _continueO. When the video is paused and continued in slow
motion modethe disc is handled automatically by the slow motion algorithm that
keeps the buffers from over- and underflowing. When resuming to normal speed
play, clear any PCL_Sig fields that are set Keep in mind that the decoder will not
resume decoding in normal speed after slow motion until it senses that new sectors
are being delivered by CDFM. Therefore, if the disc is paused, the application
must also restart the disc when resuming to normal speed.

Single Step Mode

Single step mode allows the application to control the advance of pictures in the
video sequence one picture at a time. For this mode, the same PCL ruffering
scheme used for slow motion can be used to ensure that there is always enough
data in the PCLs in order to decode and display the next picture when the
application requests it. The application ch:mges to single step mode by changing
speed to single step:

/* Change to single step. Offset and PCL parameters are zero */
mv_cbspeed(mv_path, MV_SPEED_SINGLE_S1EP, 0, NUU.);

Once in single step mode, the application requests that the next picture be
displayed with the mv _cdnext() call:

,. Request the next picture be displayed. Offset, PO. and still page parameters are
zero.*/

mv_cdnext(mv_J'lath, 0, NULL, O);

PhiliP5 IMS TSA Applit11tiun N .. te nr. TSA-008 Introduction to Progrunllliac dte FMV System pace 11

When using mv_cdnext(), the application must enable the PIC event and wait for
the PIC signal to arrive before calling mv_cdnext() again.

Scan Mode Playback

Scan mode allows the application to quickly scan through a series of images
within a sequence. This mode is provided by CD-RTOS so that the application can
implement fast forward and fast rewind functions. Scan mode looks somewhat
like CA V laser disc fast forward - still pictures from the sequence appear rapidly
on the display.

Scan mode requires that the application use a scan table. Refer back to the section
titled "Entry points and Scan Tables" for more information. For the time being,
it will be assumed that the scan table is simply an array of sector numbers
corresponding to the entry points and scan points for the sequence. For example:

int scan_tableO = { 0, 28, 67, 98, 133,171,207,243,278, •.. };

This array is simply the sector numbers containing the entry points (sequence
headers) and GOPs for our sequence. This information can be obtained from the
output of Master or by parsing the output of Pink. Refer to the attached program,
findgops.c, for an example of how to parse the output of Pink.

From normal speed play forward mode, the application enters scan mode by
changing speed to scan speed, aborting the disc play, and enabling the PIC signal.
The application also need to know where to start scanning from within the scan
table. This can be done by finding the current sector offset using _gs_pos() and
then searching for the closest sector number in the scan table:

mv_ch.,;peed(mv_path, MV _SPEED_SCAN, 0, NUIL);
ss_abort(n_file_palh);

mv_trigs I= MV _TRIG_PIC;
mv_trigger(mv_path, mv_trigs);

current_sector = _gs_pos(n_flle_path) / 2048;

,. This function searches the scan table for the closest sector and returns an index into
the scan fable. */

scan_imlex = find_scanjndex(current_sector);

Philips IMS TSA Applic:atiun Nutr nr. TSA-008 lntniduc:tion to Programminc thr FMV System pagr 19

Upon reception of the first signal after entering scan mode (usually the PCB_Sig
resulting from the ss_abort()) and every PIC signal thereafter, the application
must abort the disc play (if called by a PIC event), clear the PCL buffers, call
mv _cdnext() to ready the driver for the arrival of the next picture to decode and
display, seek to another scan point, and restart the disc play. The choice of how
many scan points will be skipped each time will determine the rate at which the
application moves through the sequence in this mode. Here is an example of the
logic described above:

Philips IMS TSA Applkation !'oink nr. TSA-008 lnlrvduction to Programming the FMV System page 20

void fmv _scan_sig_bandler(signal)
int signal;
(

} /

PCL *pcl;

/* If the signal is not the result of a PIC event. abort the disc play. */
if (signal != E_ABOR'I) ss_abort(rt_file_Jlath);

/* Empty the PCL buffers */
pcl = fmv_pcb.PCB_ Video[MPEG_ VIDEO_CHANNEL];
while (!pcl->PCL_Ctr)) pcl++;
while (pcl->PCL_Ctr))
(

pcl->PCL_Ctrl = O; pcl->PCL_Cnt = O; pcl++;

/* Are we still in scan mode? * /
if (mode != SCAN_MODE)
(

/* Resume nonnal speed play at the current scan point (or whatever is
required by the application design) */

fmv_play(scan_index); return;

/* Detennine the next scan point to seek to • direction and distance determine
forward or reven;e (1, -1) and distance jumped to next scan point * /

scan_index += direction * distance;

/* Call mv_cdnext() passing the pointer to the bead of the Pa.. list*/
mv_cdnext(mv_path, 0, fmv_pcb.PCB_ Video[MPCG_ VIDEO_CHANNEL], O);

/* Seek to the scan point */
)seek(rt_file_path, scan_table[scan_index] * 2048, O);

/* Reset the PCB_Sig field - must be reset after ss_abortO *I
finv_pcb.PCB_Sig =fmv_pcb_sig;

/* Start the disc play*/
ss_play(rt_file_flath, &fmv_pcb);

Philip< IMS TSA Applk,ation !lint., nr. TSA-008 Introduction to Programming th., FMV Syst .. m PII&" 21

••
•

fmv.h • Filename:
• Purpose:
•

ConMant,; used with CD-RTOS Full Motion Video & Audio

• Copyright 1993, Philips Interactive Media of America. All rights reserved.• .. ,
#ifndef _FMV _H
#define _FMV _H
#include <mv.h>

/• Speed constants for video•/
#define MV _SPEED_SINGLE_STEP
#define MV _SPEED_SCAN
#define MV _SPEED_SLOW(rate)
#define MV _SPEED_NORMAL

1• Attenuation values for MPEG Audio •;

OxJFFFFFFF
Ox80000000
(rate)
OxOOOOOOOO

#define MA_A TIEN_Ft.n.L Ox80808080 /* No audio - full attenuation •/
#define MA_A 1TEN_NORM Ox00800080/• Normal - full volume */

1• Type values for ma_create() •;
#define MA_TYPE_HOST
#define MA_TYPE_CD

OxOOOO
OxOOOl

/• Types for mv_create() •1
#define MV _TI'PE_HOST OxOOOO
#define MV _TYPE_CD OxOOOl
#define MV _TYPE_STll..L(page) ((page)<< 12) l0x0800)

1• Bits in the signal ma.,;k used for ma_trigger0 and mv_triggel() •t
#define MA_TRIG_EOI OxOOOI /* End of ISO stream•;
#define MA_TRIG_CSU Ox0002 /• Decoder changed to a new stream •1
#define MA_TRIG_lJPD Ox0004 /• Decoder updated the frame header*/
#define MA_ TRIG_UNF Ox0008 /• Decoder data underflow •t
#define MA_TRIG.J)EC OxOOIO /* Decoder staned decoding */
#define MA_TRIG_ALL OxOOIF /* All triggers•;

#define MV _TRIG_DER ·
#define MV _TRIG_PIC
#define MV _TRIG_C'..()P
#define MV _TRIG_SOS
#define MV _TRIG_LPD
#define MV _TRIG_CNP

OxOOOl /* Data Error*/
Ox0002 /• Picture Displayed •1
Ox0004 /* Group of Pictures •t
Ox0008 /• Start of Seq */
OxOO IO/* L'l.,;t Picrure Displayed •1
Ox0020 /* Old PCL not used */

Pl1ilipc IMS TSA Appli<.aliun Nolt' nr. TSA-0011 Jntrvdurtion to Programminc 1hr FMV Systrm pagr 22

#defineMV _ TRIG_EOI
#defineMV _TRIG_EOS
#defineMV _TRIG_BUF
#defineMV _TRIG_NIS
#defineMV _TRIG_ALL

0x0040 /* Eno of ISO stnn */
0x0080 /* Eno of Sequence •1
0x0100 /• Buffer underflow•!
0x0200 /* New Sequence Parms •!
0x03FF /* All triggers •t

t• literals for the audio board•;
#define MA_AUD_MODE
#define MA_AUD_STEREO
#define MA_AUD_JOOO
#define MA_AUD_DUAL
#define MA_AUD_SINGLE

t• literals for the video board •/
#define MX_NO_SYNC -1
#defineMX_WAIT_SYNC-2

#endif _FMV _H

I

0xOOOOOOC0
OxOOOOOOOO
0x00000040
0x00000080
0Jt000000C0

••
•
• Filename: findgops.c
• Project
• Purpose: Parsean ISO stream and determine the location of SOS or GOPs
• and write a scan table to stdout .
•
• Functions:
•
•
• Author: Ken Ellinwood
• Date: February 22, 1993
• Revisions:
• Test,;:
• Dependencies:
* Notes:
•
•
• SCCS:
•
• Copyright 1993,Philips Interactive Media of America. All rights reserved .
• .. ,
#include <stdio.h>
#include <string.h>
#include <unistd.h>

Philip, IMS TSA Appli.,ation Not .. nr. TSA-IKl8 lntrocludion to Programminc tht' FMV System page 23

Fil..E •isofp;
Fil..E •dtlfp;

unsigned char packData[4640]; 1• Room to read in a few packs •/

int sector,
int isopos;
int psize;
int •iptr;

1• Current sector number •1
1• Current iso file position •/
1• Return value from fread() •1
1• Pointer to an integer •t

#define PACK_CODE OxOOOOOIBA

typedef enum
(

GOP,
sos

};

char sdelta; 1• Sector delta from delta file •1

1••··· •
•Function: usage()
• Purpose:
• ...•....•••......•............. ,
usage()
(

fprintf(stderr, "USAGE: findgops <multiplexed stream>\n ..);
fprinlf(stderr, "Generates a scan table for an ISO MPEG stream.\n ..);

exit(0);

••
•
• Function: main() - findgops
• Purpose:
• Passed:
• ..•....•...•.................. ,
main(argc, argv)

int argc;

Phili~ IMS TSA Application Nutr nr. TSA-008 Introduction lo Programming 1hr FMV Systrm ,acr 24

char •argv[];

inti;
char *rindex();
int hours;
int minutes;
int seconds;
int pictures;
int mode = GOP;
int epCount = 1;
int packCode;
int vPacl-Count;
int pDataSize;
int holdSectorCount;

if (argc < 2) usage();

isofp = fopen(argv[l], "r+");

*rindex(argv[l], • .') = '\0';
strcat(argv[l], ".dlt");

dltfp = fopen(fotfilename[0], "r");

tprintf(stdout, "#include <fmv .b>\n\nint scan_tableO = {\n\t0, \n");

for(;;)
{

/* Seek to the beginning of the pack */
if (fseek(isotp, isopos, 0) . -1) break;

vPackCount = 0;
pDataSize = O;
holdSectorCount = O;

/* Read two video packs into the buffer so that we can parse for start codes
event when they are interrupted by pack codes*/
while (vPackCount < 2)
{

/* The first 4 bytes must be the pack start code*/
fread(&packCode, 1,4, isofp);
if (packCode != PACK_CODE)

exit (errmsg("main: iso pack not found"));

/* Read the pack, a-.sume its a video pack for now */
psize = fread(&packData[vPackCount • 2320], 1, 2320, isofp);
if (psize != 2320 && psize != 2300) break;

'· ,·
-1

~:t.....· .r=.
~,..~-:-
1"?-::;

;

Philips IMS TSA Appli•·atiun Nutr nr. TSA-4JOII lntnHluction to Programming thr FMV Systrm pagt 25

/* Determine if this pack contains audio */
iptr = (im *)&packData[vPackCount • 2320 + 2300];
if (*iptr = PACK_CODE II psize = 2300)
{

/* This is an audio pack, skip it*/

/* Get the sector delta from the delta file*/
fread(&sdelta, 1, 1, dltfp);

if (!vPackCount) sector+= sdelta;
el..e holdSectorCount +=sdelta;

isopos += 2304;

if(fseek(isofp, isopos, 0) = -1)
stop_parsing0;
continue;

if (!vPackCount)
{

/* Get the sector delta from the delta file */
fread(&sdelta, 1, 1, dltfp);
boJdSectorCount += sdelta;

isopos += 2324;

pDataSize += psize;

vPackCount += I;

if (pDataSize == 0) break;

/* Look for group start codes in this pack*/
for (i = O; i < 2320; i++)
{

if (packDara[i] = 0 && packData[i+ 1] == 0
&& packData[i+2] = 1) /* Start code */

if (packDaia[i+3] = 0xb3) /* Sequence start code*/
{

mode=SOS;
fprintf(stdout, "\t%6d, ", sector);

Philips IMS TSA Appli~-ation Nott' nr. TSA-0011 lntruduc:tiun to Procramminc the FMV System pace 26

if (packData[i+3] = Oxb8) ~ Group start code*/
(

/* Fiml the timecode • /
hours = (packData[i+4] & Ox7c) >> 2;
minutes= ((packData[i+4] & 0x03) << 4) I

((paclcDa~[i+5] & OxfO) >> 4);
seconds= ((paclcData[i+5] & Ox07) << 3) I

((packData[i+6] & OxeO) >> 5);
pictures= ((packData[i+6] & Oxlf) << 1) I

((packData[i+7] & Ox80) >> 7);

if (mode = SOS)
fprintf(stdout, "

/* ep: %4d, SOS @%2d:%02d:%02d.%02d */vi",
epCount++, hours, minutes. seconds, pictures);

else fprintf(stdout, "\t%6d,
/* ep: %4d, GOP @ %2d:%02d:%02d. %02d */
\n .. , sector, epCount++, hours, minutes, seconds,
pictures);

mode=GOP;

/* Go on to the next pack. */
sector += holdSectorCount;

stop_par..ing();

stop_parsing()
(

fprintf(stdout, .. };\n");
exit(0);

	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186

